On the Solvability of Discrete Nonlinear Two-Point Boundary Value Problems
نویسندگان
چکیده
منابع مشابه
Solvability of Discrete Two-point Boundary Value Problems
We study the discrete approximation to solutions of first-order system arising from applying the trapezoidal rule to a second-order scalar ordinary differential equation. In the trapezoidal rule the finite difference approximation are Dyk = (zk + zk−1)/2, Dzk = ( fk + fk−1)/2, for k = 1, 2, .., n, and tk = kh for k = 0, ..., n, 0 = G ( (y0, yn), (z0 + z1)/2, (zn−1 + zn)/2) ) , where fi ≡ f (ti,...
متن کاملOn the Solvability of Discrete Nonlinear Two-Point Boundary Value Problems
where T ≥ 2 is a positive integer andΔu k u k 1 −u k is the forward difference operator. Throughout this paper, we denote by Z a, b the discrete interval {a, a 1, . . . , b}, where a and b are integers and a < b. We consider in 1.1 two different boundary conditions: a Dirichlet boundary condition u 0 0 and a Neumann boundary condition Δu T 0 . In the literature, the boundary condition considere...
متن کاملSolvability of Discrete Neumann Boundary Value Problems
In this article we gain solvability to a nonlinear, second-order difference equation with discrete Neumann boundary conditions. Our methods involve new inequalities on the right-hand side of the difference equation and Schaefer’s theorem in the finitedimensional space setting. Running Head: Discrete BVPs AMS Subject Code: 39A12, 34B15 Corresponding Author: C C Tisdell
متن کاملSolvability of discrete Neumann boundary value problems
In this article we gain solvability to a nonlinear, second-order difference equation with discrete Neumann boundary conditions. Our methods involve new inequalities on the right-hand side of the difference equation and Schaefer’s Theorem in the finite-dimensional space setting. © 2006 Elsevier Inc. All rights reserved.
متن کاملOn the Solvability of Nonlinear, First-Order Boundary Value Problems
This article investigates the existence of solutions to first-order, nonlinear boundary value problems (BVPs) involving systems of ordinary differential equations and two-point boundary conditions. Some sufficient conditions are presented that will ensure solvability. The main tools employed are novel differential inequalities and fixed-point methods. AMS 2000 Classification: 34B15, 34B99
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences
سال: 2012
ISSN: 0161-1712,1687-0425
DOI: 10.1155/2012/927607